

Hadron spectroscopy and exotic states at LHCb

Tomasz Skwarnicki on behalf of the LHCb collaboration

Present only the most recent measurements based on Run 1 + Run 2 data:

- Near threshold $D\overline{D}$ spectroscopy
- Excited B_c^+ states
- Update on $P_c^+ \rightarrow J/\psi p$ pentaquarks in $\Lambda_b \rightarrow J/\psi p K^-$ decays (first presentation!)

Moriond QCD March 26, 2019

Candi

Near-threshold $D\overline{D}$ spectroscopy

LHCb-F	PAPER-2019-005		Run 1 + Run 2		
in prepa	aration		9 fb ⁻¹		
		$m_{\psi(3770)}$ [MeV/ c^2]	_	$m_{\chi_{c2}(3930)}$ [MeV/ c^2]	$\Gamma_{\chi_{c2}(3930)}$ [MeV]
PLB 769, 187 (201 Purely hadronic final states!	 Shamov and Todyshev PDG average PDG fit This analysis 	$\begin{array}{l} 3779.8 \ \pm 0.6 \\ 3778.1 \ \pm 1.2 \\ 3773.13 \pm 0.35 \\ 3778.13 \pm 0.70 \pm 0.63 \end{array}$	PRL 96, 082003 (2006) PRD 81, 092003 (2010)	Belle $3929 \pm 5 \pm 2$ BaBar $3926.7 \pm 2.7 \pm 1.1$ This analysis $3921.90 \pm 0.55 \pm 0.19$	$\begin{array}{rrr} 29 & \pm 10 & \pm 2 \\ 21.3 & \pm 6.8 & \pm 3.6 \\ 36.64 \pm 1.88 \pm 0.85 \end{array}$
D ^o D ^o LHCb 100 100 100 100 100 100 100 10	$\begin{array}{c} D^{0} \overline{D}^{0} \overline{D}^{0} \overline{D}^{0} \\ 0 0 \\ 0 \\ 0 0 \\ 0 $	842) bkg 770) total 3872) ervation of tion of ψ(3770)	LHCb preliminary Likely	$D^{0}\overline{D}^{0} \qquad X(3842) \qquad \text{bkg} \\ \chi_{c2}(3930) \qquad \text{total} \\ M = 3921.90 \pm 0.55 \pm 0.19 \text{ MeV}$	LHCb preliminary
^{1/с} ^{1/с ^{1/с} ^{1/с} ^{1/с ^{1/с} ^{1/с ^{1/с ^{1/с} ^{1/с ^{1/с ^{1/с} ^{1/с }}	00 (dominantly 00 D+D-	ψ(1 ³ D ₁) state) Ψ(++++++++++++++++++++++++++++++++++++	$(1^{3}D_{3})$ state $-\frac{1}{2}$ $(3^{3}D_{3})$ state $-\frac{1}{2}$ $(3^{3}D_{3})$ state $-\frac{1}{2}$ $(3^{3}D_{3})$ state $-\frac{1}{2}$ $(3^{3}D_{3})$ $(3^{3}D_{3})$ state $-\frac{1}{2}$ $(3^{3}D_{3})$ $(3^{3}D_{3})$ $(3^{3}D_{3})$ state $-\frac{1}{2}$ $(3^{3}D_{3})$ $(3^{3}D$	$\Gamma = 36.64 \pm 1.88 \pm 0.85 \text{ MeV}$	
$\begin{array}{c} 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$M = 3778.13 \pm 0$	$M = 3842.71 \pm 0$ $\Gamma = 2.79 \pm 0$ 70 ± 0.63 MeV	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Likely $\chi_{c2}(2^{3}P_{2})$ state	W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.
1	3.72 3.74 3.76 3	.78 3.8 3.82 $m_{\rm D\bar{D}}$	3.84 3.86 $[\text{GeV}/c^2]$	3.8 3.85 3.9 3.95 4 4 $m_{ m D\bar{D}}$	$4.1 4.15 [GeV/c^2]$

Status of charmonium spectroscopy

 ${}^{1}S_{0} {}^{3}S_{1}$ $^{1}P_{1}$ $^{3}P_{0,1,2}$ $^{1}D_{2}$ $^{3}D_{1,2,3}$ $^{1}F_{3}$ $^{3}F_{2,3,4}$

Spectroscopy of $b\bar{c}$ is clean theoretically (no EM or gluon annihilations) but difficult experimentally: low production cross-sections, large backgrounds in detection of soft hadrons or γ originating from the primary pp interaction vertex

Confirm the recently presented CMS results arxiv:1902.00571 (see the talk by Greg Landsberg) (also ATLAS PRL 113 (2014) 12004; two peaks unresolved)

 $6872.1 \pm 1.3 \,(\text{stat}) \pm 0.1 \,(\text{syst}) \pm 0.8 \,(B_c^+) \,\text{MeV}/c^2$.

 $M(2^{1}S_{0})$

Total fit

 $B_c^+ \rightarrow J/\psi \pi^+$

 $B_c^+ \rightarrow J/\psi K^+$

700

PL,. B749 (2015) 454

and others

5.4% background

 $P_c(4450)^+ = \chi_{c1}p$ threshold?

Guo, Meissner, Wang, Yang, PRD92 (2015) 071502

Wu,Molina,Oset,Zou, PRL105 (2010) 232001 Wang,Huang,Zhang,Zou, PR C84 (2011) 015203 Karliner, Rosner, PRL 115 (2015) 122001 and others

few MeV

 $M_{\Sigma_c^+}$

+

 D_{1}^{*0}

Z

prevented

ast fall-apart

LL.

New $\Lambda_b \rightarrow J/\psi p K^-$ data sample

9x more than used in the Run 1 2015-2016 papers

Improvements in the data selection (x 2), integrated luminosity (x 3) and cross-section ($\sqrt{s} = 13$ TeV vs 7-8 TeV)

6D amplitude model fit to masses and decay angles

 When fit with the 2015 amplitude model, the full data sample gives the P_c(4450)⁺ and P_c(4380)⁺ parameters consistent with the 2015 results

Moriond QCD, Tomasz Skwarnicki, Mar 26, 2019

New $\Lambda_b \rightarrow J/\psi p K^-$ data sample – narrow $P_c^+ \rightarrow J/\psi p$ peaks

LHCD Moriond QCD, Tomasz Skwarnicki, Mar 26, 2019

Narrow $P_c^+ \rightarrow J/\psi p$ peaks with Λ^* suppression

Fits with interferences

- Nominal fits preformed with incoherent sum of Breit-Wigner amplitudes.
- Also perform fits with coherent sum between various Breit-Wigner amplitudes, including the broad P_c⁺ state (implies the same spin and parity).
- No significant evidence for interferences, but the source of the largest systematic uncertainty on the mass and width determinations.

Example of the fit with interference: $P_c(4312)^+$ interfering with the broad P_c^+

Results

To determine the relative P_c^+ production rates, fit inclusive $m_{J/\psi p}$ obtained with $1/\varepsilon$ event-weights, where ε is the efficiency parameterization in sixdimensional Λ_b^0 decay phase-space (masses and angles). Makes the results J^P independent.

$$\mathcal{R} \equiv \frac{\mathcal{B}(\Lambda_b \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi \, p)}{\mathcal{B}(\Lambda_b \to J/\psi \, p K^-)}$$

State	$M \;[{ m MeV}\;]$	$\Gamma \; [{ m MeV} \;]$	(95% CL)	$\mathcal{R}~[\%]$
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7 \substack{+ & 3.7 \\- & 4.5 }$	(< 27)	$0.30 \pm 0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} ^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

LHCb-PAPER-2019-014 in preparation

Plausible theoretical interpretation

imply importance of ρ -exchange

The **only** thresholds below which molecular bound states are expected in this mass range

LHCb-PAPER-2019-014 in preparation

The near-threshold masses and the narrow widths of $P_c(4312)^+$, $P_c(4440)^+$ and $P_c(4457)^+$ favor "molecular" pentaquarks with meson-baryon substructure!

 $P_c(4312)^+$, $P_c(4440)^+$ not near triangle diagram thresholds, $P_c(4457)^+$ is (see backup slides).

This hypothesis is not ruled out

coincidence?

LHCD Moriond QCD, Tomasz Skwarnicki, Mar 26, 2019

Comparison to numerical predictions

- Many theoretical predictions for $\Sigma_c^+ \overline{D}^{(*)0}$ published before 2015, some in quantitative agreement with the LHCb data
 - Wu,Molina,Oset,Zou, PRL105, 232001 (2010),
 - Wang,Huang,Zhang,Zou, PR C84, 015203 (2011),
 - Yang,Sun,He,Liu,Zhu, Chin. Phys. C36, 6 (2012),
 - Wu,Lee,Zou, PR C85 044002 (2012),
 - Karliner, Rosner, PRL 115, 122001 (2015)

Example:

Nucleon resonances with hidden charm in coupled-channels models

 ΔE – binding energy

Jia-Jun Wu, T.-S. H. Lee, and B. S. Zou Phys. Rev. C **85**, 044002 – Published 17 April 2012

arXiv:1202.1036

 $\Delta E(4440) = 19.5^{+4.9}_{-4.3} \text{ MeV}$

TABLE III: The pole position $(M - i\Gamma/2)$ and "binding energy" $(\Delta E = E_{thr} - M)$ for different cut-off parameter Λ and spin-parity J^P . The threshold E_{thr} is 4320.79 MeV of $\bar{D}\Sigma_c$ in PB system and 4462.18 MeV of $\bar{D}^*\Sigma_c$ in VB system. The unit for the listed numbers is MeV.

	PB System			VB System			
	$J^p = rac{1}{2}^- \Lambda$	$M - i\Gamma/2$	ΔE	$M - i\Gamma/2$	ΔE		
	650	0+10 M	.7	$\Delta E(4457)$	7)-=	$2.5^{+4.3}_{-4.1}$	MeV
$\Delta E(431)$	$(2) = \frac{5}{800}$	$8^{+1.0}_{-6.8}$ Me	€V_	4462.178 - 0.002i	0.002		
	1200	4318.964 - 0.362i	1.826	4459.513 - 0.417i	2.667		
	1500	4314.531 - 1.448i	6.259	4454.088 - 1.662i	8.092		
	2000	4301.115 - 5.835i	19.68	4438.277 - 7.115i	23.90		
	$J^p = \frac{3}{2}^-$						
	650	-	1070		-		
	800	-	1070	4462.178 - 0.002i	0.002		
	1200	-	1.70	4459.507 - 0.420i	2.673		
	1500	-	1.75	4454.057 - 1.681i	8.123		
	2000	553	1972)	4438.039 - 7.268i	23.14		

 Λ - cut off on exchanged meson mass.

15

Summary

- Astonishing first results from Run 1 + Run 2 LHCb data!
 - Observation of prompt production a very narrow $X(3842) \rightarrow D\overline{D}$ state, consistent with spin-3 1³D₃ $c\overline{c}$ state (in addition to less surprising the first observation of prompt hadroproduction of $\psi(3770)$, $\chi_{c2}(3930)$, and observation of excited B_c⁺ states)
 - Observation of three narrow pentaquark states $P_c^+ \rightarrow J/\psi p$, shedding more light into the nature of the $J/\psi p$ pentaquark structures in $\Lambda_b \rightarrow J/\psi p K^-$
 - The previously reported P_c(4450)⁺ structure is now resolved at 5.4σ significance into two narrow states: the P_c(4440)⁺ and P_c(4457)⁺ exotic baryons:
 - The new results supersede the previously reported 4450 results.
 - The new analysis not sensitive to broad $J/\psi p$ states. Confirmation of P_c(4380)⁺ awaits construction of new amplitude model.
 - A narrow companion state, $P_c(4312)^+$, is discovered with 7.3 σ significance.
 - Since all three states are narrow and below the $\Sigma_c^+ \overline{D}^0$ and $\Sigma_c^+ \overline{D}^{*0}$ thresholds within plausible hadron-hadron binding energies, they provide the strongest experimental evidence to date for the existence of molecular states of a baryon and a meson.
 - However, alternative explanations, like tightly-bound pentaquarks, cannot be ruled out.
 - Proper identification of the internal structure of the observed states will require more experimental (J^P?, isospin partners?) and theoretical scrutiny.

BACKUP SLIDES

Could the narrow P_c⁺ peaks be due to hadron rescattering via triangle diagrams?

J/ψ

 $\Lambda_c^+(2595)\overline{D}^0$ Weighted candidates/(2 MeV) LHCb preliminary 1200 cosθ_{Pc}-weighted data total fit 1000 polynomial $\Gamma_0 = 159 \text{ MeV}$ 800 600 ianale 400 BW *P*_c(4312)⁺ (4440) 200 4350 4500 4550 4600 $m_{J/\psi\rho}$ [MeV]

 $P_c(4312)^+$, $P_c(4440)^+$ are too far from any rescattering thresholds to be triangle diagram peaks (see the next slide)

 $P_c(4457)^+$ is right at the $\Lambda_c^+(2595)\overline{D}^0$ threshold, thus the peaking due to the triangle-diagram process is more plausible K^-

For a realistic value of the width of the $D_{s1}^*(2860)^-$ (Γ_0), the fit quality not as good as with BW amplitude for $P_c(4457)^+$.

Amplitude analysis will have more handles on distinguishing trianglediagram and BW amplitudes Moriond QCD, Tomasz Skwarnicki, Mar 26, 2019

Could the narrow P_c⁺ peaks be due to hadron ₉₋₀₁₄ rescattering via triangle diagrams?

LHCb-PAPER-2019-014 in preparation

LHCD

$P_c(4312)^+$, $P_c(4440)^+$ are too far from any rescattering thresholds to be triangle diagram peaks